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ABSTRACT
An estimator is used to estimate the unknown parameter in a linear regression model. In
this paper, a new estimator was derived from further modification of the Liu-type
Estimator. The performance of the new estimator was evaluated by comparing its mean
squared error with the mean squared errors of other estimators. It was found that there
is a reduction in mean squared error in the new estimator under certain conditions.
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INTRODUCTION
A linear regression model is used to describe the relationship between a dependent
variable and one or several independent variables. A linear regression model is generally
written as y = fi0 + P}x} + j92*2 + ... + fix + £, where )3 ., j' = 0, 1, 2, ..., p , is a parameter
and £ is the error term. The parameter f) in the linear regression model is unknown and
is to be estimated from data. There are many existing estimators in regression analysis
such as the Ordinary Least Squares Estimator, the Shrunken Estimator (Stein, 1960; cited
by Hocking et al, 1976), the Ordinary Ridge Regression Estimator (Hoerl and Kennard,
1970), the r- k Class Estimator (Baye and Parker, 1984), the Liu Estimator (Liu, 1993),
the r - d Class Estimator (Kaciranlar and Sakallioglu, 2001) and the Liu-type Estimator
(Liu, 2003; Liu, 2004).

In this paper, a new estimator is developed to improve the accuracy of parameter
estimates in regression analysis. The new estimator is developed by modification of the
Liu-type Estimator. Its performance is evaluated by comparing it with other estimators.
The Ordinary Ridge Regression Estimator and the Liu Estimator obtained much interest
from the researchers as many studies have been done on these estimators (Baye and
Parker, 1984; Pliskin, 1987; Sarkar, 1996; Kaciranlar et al., 1998; Kaciranlar et al, 1999;
Sakallioglu et al, 2001; Kaciranlar and Sakallioglu, 2001). In this paper, the performance
of the new estimator is evaluated by comparing its mean squared error with the mean
squared errors of the Ordinary Ridge Regression Estimator and the Liu Estimator.

A NEW ESTIMATOR

Suppose a linear regression model with standardized variables can be written in the
matrix form (Akdeniz and Erol, 2003)
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Y = Zy + e, [2.1]

where Y is a vector of standardized dependent variables, Z is a matrix of standardized
independent variables, y is a vector of parameters, and e is a vector of errors such that
e ~ N(0, a2l).

Then, the linear regression model, Y = Zy + e, can be transformed into a canonical
form (Akdeniz and Erol, 2003)

Y = Xp + e [2.2]

where X = ZT, P = T y is a vector of parameters, r is a vector of parameters in the
regression model Y = Zy + c, XX = X, T is an orthonormal matrix consisting of the
eigenvectors of Z7 and A is = diag(X1, X2, ..., X ) a diagonal matrix whose diagonal
elements are the eigenvalues of Z 'Z.

In this paper, a new estimator is introduced from further modification of the Liu-type
Estimator. Here, a special case of Liu-type Estimator (Liu, 2003) is considered:

pr = (X'X + d)"1 (X'Y+ p)

= [I-tX+d)"1 (o-l) p [2.3]

where c is the biasing parameter that is added to the diagonal of matrix X'X, c> 1, and
P^X'X^'X'Y is the Ordinary Least Squares Estimator of parameter p.

The bias and the mean squared error of p are given by Equations [2.4] and [2.5],
respectively.

bias(p) = - (X + d)"1 {c- l)p

mse(

(c-lfffi

[2.4]

[2.5]

The estimator, pc, is a biased estimator since there is a certain amount of bias in
the estimator. A new estimator is introduced by reducing the bias in pc. Let bias(pc) be
the bias of p with the unknown P replaced by p. Thus, bias(pc) is given by

bias(p) =-(X + a)-1 (c - 1) (IT- l )p

Hence, the new estimator, p , is given by

pc = P - bias (pe)

= p - [ - ( X + d ) " 1 ( c - l ) p ]

= p + (X + d ) " 1 ( c - l ) p f

[2.6]
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= [I + (X + d)"' (c- 1)][I -(X + d ) " ' ) ( c - l ) p t

= [1+ (X + d ) - 2 ) ( c - l ) 2 ] p ( [2.7]
where c> 1.

The bias, variance-covariance matrix and mean squared error of the new estimator
are given by Equations [2.8], [2.9] and [2.10], respectively.

= [ I - (X + d ) " 2 ( c - l ) 2

= [ I - ( X + d ) " 2 ( c - 1 ) 2 ] P - p

Var (Pr) = Var ([I - (X + d)~2 ( c - I)2] p)

= [ I - (X+ d)" 2 (c- I ) 2 ] 2 V a r ( p )

= [I - (X + d)" 2 (c- I ) 2 ] 2 CT2 X"1

= a 2 [ l - ( X + d ) - 2 ( c - l ) 2 ] 2

mse(p f) = V a r ( P ( ) + [b i a s (p , ) ] 2

[2.8]

[2.9]

[2.10]

It is found that the new estimator, p , has a reduction in bias compared to the special
case of Liu-type Estimator, p . This can be seen by considering the difference of the bias
between these two estimators in terms of their individual magnitude:

c-\

" •

c-\

rl-iTrl

7 =1,2 , . . . , A

[2.11]
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Since c> 1, thus bias((#);) -pias((/3»);) < 0. This implies that the magnitude of the bias

of fy is less than magnitude of the bias of (3f.

MEAN SQUARED ERROR AS AN EVALUATION TOOL FOR ESTIMATORS

The performance of the new estimator is further evaluated by comparing its mean
squared error with other estimators. In general, the mean squared error of an estimator
is used as a measure of the goodness of the estimator. Let mse(p) denote the mean
squared error of an estimator, p. Then, the mse(p) is given by

mse(p) =E[(P-Py<p-P)]. [3.1]

Suppose p, and p2 are two estimators of the parameter p. The estimator p2 is
superior to the estimator Pj if the mean squared error of p2 is smaller than the mean
squared error of p , , that is, Suppose the estimator, p r can be represented as a product
of a matrix A, and the vector of standardized dependent variables, Y, that is, p ] = A, Y.
Suppose also that the estimator, p2, can be represented as a product of a matrix \2 and
the vector of standardized dependent variables, Y, that is, j}2 = A,2 Y. Let bias(Pj) and
bias(p2) denote the bias of the estimators, p, and p2 respectively. Then, the condition
for mse(Pj) > mse(p2)is given by Theorem 3.1.

Theorem 3.1. The conditions for mse(Pj)> mse (p2) are:

(a) AJAJ' - A ^ ' is a positive definite matrix, and

(b) [bias(P2)](^A1A;-A?A,;j [bias(P2)] < a2.

Proof. Let M(Pj) and M(p2) denote the mean squared error matrices of the estimators,
Pjand p2, respectively. Let Var(p,) and Var(p2) denote the variance-covariance matrices
of the estimators, ^ and j}2, respectively. The mean squared error of an estimator is
equal to the variance of the estimator plus the square of its bias. Hence, the mean
squared error matrices, M(p,) and M(p2), are given by Equations [3.2] and [3.3],
respectively.

M(p,) = VarCp,) + [bias(P,)]

= Var(A1 Y) + [bias(P,)] [bias(

= O2A1A2'+ [bias^)] [bias^)]' [3.2]

M(p2) = <? A ^ / [bias(p2)] [bias(p2)]' [3.3]

Thus, M(pj) - M(p2) is given by
-M(p 2 )

j-[bias(p2)] [bias(p2)]] j+ [bias(P,)] [bias(P,)]. [3.4]
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Note that [bias(ft)] [bias(P,)] is positive definite. Therefore, M(p,) - M(p2) is positive

definite if o2 (A,A,' - W')~ [bias(ft)] [bias(ft)]' is also positive definite.

Applying the theorem from Farebrother (1976): Let Q be a p x p positive definite
matrix, \\f a nonzero p x 1 vector and g a positive scalar, then g Q - \j/\|/' is positive definite

if and only if y'Q"1 Vj/ < g. Thus, the conditions for a2 (A,A,' - A^A/)- [bias (ft)] [bias(ft)
to be positive definite are:
(a) AJAJ' - W ls a positive definite matrix and

(b) [bias(ft)] ( A ^ ' - AyV/)"1 [bias(ft)] < o*.

On the other hand, Theobald (1974) considered a weighted sum of the coefficient mean
squared error as another measure of the goodness of an estimator. The weighted sum of
the coefficient mean squared error is known as the generalized mean squared error
(Sakallioglu et ai, 2001). The generalized mean squared error of an estimator, p, is given
by

gmse(p) =E[(P-P)'(P-P)]> [3.5]

where B is a nonnegative definite matrix.
Theobald (1974) established a relationship between the generalized mean squared

error and the mean squared error matrix of an estimator: Suppose there are two
estimators, namely, jjj and p 2 , the following conditions are equivalent:

(a) M(p,) - M(p2) is positive definite, and

(b) gmse(Pj) > gmse(p2) for all positive definite matrix B.

Note that gmse(p) is equal to msegmse (p ) when the matrix B in Equation [3.5] is
equal to an identity matrix I. From this, we see that the condition for M(pj) - M(p2) is
positive definite is equivalent to the condition for mse(p,) - mse(p2).
Thus, the conditions for mse(Pj) - mse(p2) are:

(a) A,A,' - A ^ ' is a positive definite matrix and

(b) [bias(ft)]' (A,A,- - A ^ ' ) - 1 [bias(ft)] < cf.

Hence, the proof for Theorem 3.1 is completed. •
The comparison between the new estimator and other estimators is performed by

applying the concept of Theorem 3.1.

THE EVALUATION OF THE NEW ESTIMATOR

The Ordinary Ridge Regression Estimator and the Liu Estimator are two biased estimators.
The new estimator is compared with these two estimators in terms of mean squared error.

The Ordinary Ridge Regression Estimator is given by (Hoerl and Kennard, 1970)

p = (X'X +/EI)"1 XY
* = AAY, [4.1]
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where A, = (X'X +H)1 X', k > 0.
Hence, Ah A/ i s given by (Hoerl and Kennard, 1970)

A 4 A / = (TT+ M)"2A. [4.2]

The bias and the mean squared error of j^are given by Equations [4.3] and [4.4],
respectively (Hoerl and Kennard, 1970).

=-(X'X

mse(p)= Zy-i L , \k)*
+,x +J

k)2\

[4.3]

[4.4]

The Liu Estimator is given by (Liu, 1993)

p = (X'X + I)"1 (X'X + dIMX'X)-1 XY
' = ArfY,

where Ad = (XX + I)"1 (X'X + dO(X'X)-1 X', 0 < d < 1.
Hence, A^A/ is given by (Liu, 1993)

A / / = (A +/)"2 (A + dl)2 A"1

[4.5]

[4.6]

The bias and the mean squared error of p are given by Equations [4.7] and [4.8],
respectively (Liu, 1993).

= - (X'X [4.7]

mse [4.8]

The new estimator, (jj,), can also be written as

= [ i - (A + d)"2 (c- l )2]A-'XY

= A Y,

where A,« [ i - (X + d)"2(c - I ) 2 ] A"'X' , c> 1.
Hence, A^A', is given by

A A / = [ I - d) "2

[4.9]

[4.10]

Theorem 4.1 shows the comparison between pf and p while Theorem 4.2 shows the
comparison between p and p .
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Theorem 4.1. Let c in p f be fixed and c > 1.

(a) If [bias((}f)]' (A4A/ - AA/;-![bias(pf) < a2, then mse(p ) > mse(pr) for 0 < k < min
HbXl and
(b) If [bias(pA)]7AA;-AAA/j-l[bias(^) < a2, then mse(pr) > mse(^) for 0 <
< K

W h e r e

A/c-1)2

/Voo/.

(a) From Theorem 3.1, the conditions for mse(p ) > mse(J3f) are:
(i) W - AA f ' is a positive definite matrix, and

(ii) [bias(pf)] ' (AAA/ - AfA r [bias(pf)] < a2.

Using A/ i , ' = (A+ &I)"2A (Equation [4.2]), and A A/ - [i - (A + d)"2 (c - I ) 2 ] 2 A"1

(Equation [4.10]), the matrix A ^ ' - AAf ' is a p x /? diagonal matrix with diagonal

A, 1
elements

•kf A;

matrix if and only if

, 7 = 1 , 2 , ..., /?. Hence, A ^ ' - A A/ is a positive definite

*> l

a,+kf A,
i—

\ i

>0

>0

->0

A 2(A + c/ - (A + kf(A + 2r - 1/CA7 + 1 /

i A > 0

\*(X} + cf - (X} + kf(X} + 2c- \f( A; + 1 / > 0

AM- + */-(A +AKA. + ar-VfA- + i;>0
J J J I I

Xfc -1/ - *M/ + 2G*; + 2c - l; > 0

A/c-1 /* < -
+ 2cA,+2c-l
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X/c-lf
Let ^ =

A * + 2d +2c-r- ; '= l j 2i "" P' N ° t e t h a t ^ > ° a n d C > L H e n c e > A A ' ~ A A '
is a positive definite matrix if and only if 0 < k< min((b,);l. From Theorem 3.1, the proof
for Theorem 4.1 (a) is completed,
(b) From Theorem 3.1, the conditions for mse(pf) > mse(pp are:

(i) AA ' - AAAA' is a positive definite matrix, and
(ii) [bias(^)] 'fAA/-A,A;r1[bias(pA)] < a2.

Hence, AfA/ - A ^ ' is a positive definite matrix if and only if

1--
<c-lf A,

->0

A/c-1 /
Let (b\)j= ; 2 o i ^TTT' 7 = h 2, ..., P. Hence, AAc ' - A ^ ' is a positive definite

matrix if and only if 0 <
4.1 (b) is completed.

k. From Theorem 3.1, the proof for Theorem

Theorem 4.2. Let cin Pf be fixed and 1 < c < min

(a) If [bias(p f)]'fA r fA/-AA/;- I[bias(p f)] < a2, then mse(prf) >mse(pf) for 0 < max
max)(^2)j < d < 1, and

(b) If [bias(prf)] ' (A A/ - A^A/J-^biasC^)] < a2, then mse(pf) > mse(prf) for 0 < d <
} 1

where W}= , ; = 1 , 2 , ..., p.

Proof.

(a) From Theorem 3.1, the conditions for mse(p r f) > mse(p f) are:

(*) ^Ad " AAc' i s a positive definite matrix, and

(ii) [bias(p f)] • (A/L4' - AA V l b i a s C p ; ] < a2.

Using A / L / = (A+I)-2 (A+^)2A"1 (Equation [4.6]), and A A/ = [i - (A + d)"2 ( c - I)2]2)
A"1 (Equation [4.10]), the matrix A / L / - A A ' is a p x /? diagonal matrix with diagonal

elements , j = 1, 2, ..., p. Hence, A/L/ - AA/ is a positive

definite matrix if and only if
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A,
1--

(c-lf
>0

>0

->0

; + e/ - (A, + 1/YA,
->0

A; + cf - (Xt + \)% + 2c - 1 / > 0

+ cf - (Xj + 1/(A, + 2c-lJ>0

df A; + e/ - (A/ + 4A;£ - A,+ 2c -1 - A/) > 0

Let H = -

where 0 < d < 1. Thus,

0<-

fixed and 1 < c< min, 1 < c < m i n

', j = 1, 2, ..., p. Note that d is the biasing factor of (p ),

< 1. Solving the inequality

1 . Hence, by letting c in p f be

, A ^ ' -AA f ' is a positive definite matrix

for ewe get l<c<
2A.

if and only if 0 <
completed.

d < 1. From Theorem 3.1, the proof for Theorem 4.2(a) is

(b) From Theorem 3.1, the conditions for mse(p(.) > mse(p ) are:

(i) A Ac' - A./i.d' is a positive definite matrix, and

(ii) [bias(p;] ' (A A/ - A/idr [bias(p;]< a2.
Hence, AfAf' - A ^ ' is a positive definite matrix if and only if

1--
(c-lf

->0

d<-
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Let

1 < c < min

", j = 1, 2, ..., p. By letting c in p be fixed and

, A A ' - A^A/ is a positive definite matrix if and only if 0 < d

. From Theorem 3.1, the proof for Theorem 4.2(b) is completed.

CONCLUSIONS

A new estimator was introduced from further modification of the Liu-type Estimator. The
new estimator, p f, was compared with the Ordinary Ridge Regression Estimator, p , and
the Liu Estimator, p , in terms of the mean squared error. The comparison results are
presented in Theorem 4.1 and Theorem 4.2. It was found that the accuracy of the new
estimator is higher compared to these two estimators because there is a reduction in the
mean squared error of the new estimator under certain conditions, which are

(i) mse(p )>mse(p f) for 0<k < min{(^) ;] and c > 1 if [ b i a s ( p f ) ] ' (A^A/ -

X/c-lf
A'j-1 [bias(pf)]< o* where ^ A ^ ^ . r r h 2, ..., A

[2A,
(ii) mse(p ) > mse(pf) for 0 < max((ft2)}< d < 1 and 1 < c min if

[bias(pc)] ( A / / - AA/r'[bias(p r)]< o\ where fty—

>=1, 2,..., p.

Therefore, this new estimator can be considered as an alternative to estimate the
unknown parameter in linear regression models. This new estimator could be
recommended to those working on applications involving regression analysis in any field
of study such as econometrics, oceanography and geophysics, In directly, the results of
the regression analysis could be improved.

This study focused on the estimator for the linear regression model. Extending from
this study, future research could be done on exploring the estimators for the non-linear
regression model.
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